Динамический диапазон
и
фотографическая широта
Новиков М.Г.
18.11.2008
Содержание
Введение
При выборе монитора, сканера, фотоаппарата, а также других устройств, работающих с изображением, мы чаще всего обращаем внимание лишь на одну из их характеристик — разрешающую способность этого устройства. Неудивительно — ведь именно её в первую очередь выпячивают в рекламе, как наиболее простую для понимания широкими массами.
Однако, помимо разрешающей способности, существуют другие, не менее важные для качества картинки, характеристики. Таковыми, например, являются фотографическая широта и динамический диапазон. И если с разрешающей способностью всё более-менее понятно, то с упомянутыми характеристиками часто возникают затруднения. Более того, эти два понятия на первый взгляд кажутся настолько похожими, что вносит только дополнительную путаницу. Попробуем внести ясность в этот вопрос на примерах как аналоговых, так и цифровых устройств.
Определение
Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может зафиксировать внутри одного кадра фотоустройство.
Динамический диапазон — максимально возможный полезный диапазон собственных оптических плотностей плёнки, фотобумаги и т.п. (или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства).
Таким образом, термин «фотографическая широта» применяется для оценки запечатлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.). Чувствуете разницу?
В аналоговых устройствах фотографическая широта фотоплёнки не зависит от своего динамического диапазона, поскольку теоретически любой диапазон внешних яркостей может быть закодирован в сколь угодно небольшой диапазон оптических плотностей плёнки. Однако очевидно, что при большом диапазоне оптических плотностей, картинка будет выглядеть лучше и переходы между яркостями будут более качественными, поскольку на микроуровне плёнка всё же хоть и стохастична, но слегка дискретна, а информация о градациях должна где-то храниться.
В цифровых же устройствах изначальная строгая дискретность кодирования изображения является причиной чёткой зависимости фотографической широты от динамического диапазона матрицы. Дело в том, что пиксели матрицы во время экспозиции накапливают определённое количество электронов, линейно зависящее от внешней яркости. Количество электронов — конечное, от единиц до десятков тысяч. Больше определённого предела пиксель чисто физически вместить не сможет. Градация яркостей определяется именно этими количествами электронов. Электроны, когда их счёт идёт на единицы, не могут дать подобие аналоговой, плавно изменяющейся оптической плотности. Без заметной потери градаций, в электроны, число которых и так невелико, большую фотографическую широту не уместить. Вот она и привязана к этому количеству, и линейно от неё зависит. А это количество и есть динамический диапазон.
Из-за такой линейной зависимости понятие фотографической широты часто заменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично. Однако, сравнивая их характеристики с характеристиками аналоговых фотоустройств, об этой особенности не следует забывать.
Если с матрицами всё просто, то отношения между фотографической широтой и динамическим диапазоном плёнки, как вы уже успели заметить, гораздо более сложны. Давайте подробнее рассмотрим их.
Предположим, что фотографическая широта у некоторой плёнки небольшая. Такая плёнка слишком засвечивается в ярких местах кадра и недостаточно — в тёмных. Если мы представим себе, как это происходит, то нам станет очевидно, что в тех местах, которые освещены средне, и не подверглись на плёнке пересвету или недосвету, градации яркости будут проработаны более качественно, чем могло бы быть на плёнке с большой фотографической широтой. Ведь небольшая фотографическая широта плёнки оказывается растянутой на весь её внутренний диапазон оптических плотностей (динамический диапазон). Именно поэтому профессиональные плёнки имеют меньшую фотографическую широту, чем любительские. По той же причине у профессиональных плёнок и диапазон оптических плотностей (динамический диапазон) пытаются сделать как можно шире. В любительских же плёнках за счёт большей фотографической широты фотографу прощается возможная ошибка в экспозиции, но в любом случае ухудшается качество световых переходов.
То же самое и с фотобумагой. Контрастная фотобумага имеет меньшую фотографическую широту, поэтому яркие места кадра становятся ещё ярче, а тёмные — ещё темнее. В целом, фотография становится контрастнее. Такая фотобумага применяется для серых, вялых негативов, имеющих небольшой динамический диапазон. Для резких же кадров с большим динамическим диапазоном больше подходит мягкая фотобумага, которая сможет вместить в себя весь динамический диапазон такого негатива.
Для подведения итога этой главы и закрепления материала, давайте рассмотрим определения фотографической широты и динамического диапазона в применении к различным фотоустройствам и фотоматериалам:
Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7 EV (контрастная) — 1,7 EV (мягкая).
Динамический диапазон фотобумаги (диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения 1,2-2,5D.Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, зеркалок — 3-3,6D.Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные же величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов может быть различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то применительно к нему этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости. Но величина этого параметра зависит в основном от программы отображения и используемого цветового профиля, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение. Однако существует специальный метод коррекции (тональная компрессия), позволяющий при сохранении фотографической широты увеличить контрастность.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3-3D (200:1 — 1000:1).Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6-8 EV у офисных планшетных до 13-16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — аналогично матрице фотоаппарата, способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8-2,4D у офисных планшетников до 4-4,9D у профессиональных барабанных сканеров.Примечание по сканеру: Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница яркости этого материала (абсолютно белый лист или полностью прозрачная плёнка) оказывается известной. Верхняя граница динамического диапазона матрицы сканера заводской калибровкой подгоняется под эту максимальную яркость. Следовательно, верхние края шкал фотографической широты сканера и динамического диапазона плёнки (с учётом её вуали) будут совпадать.
Принимая во внимание, что у цифрового устройства динамический диапазон равен фотографической широте, можно сказать, что будут совпадать верхние края шкал динамических диапазонов сканера и плёнки+вуаль. А значит, наложив их диапазоны друг на друга, мы сможем их корректно сравнить, и определить, сможет ли тот или иной сканер оцифровать плёнку, не обрубив её диапазон. Для справки: динамический диапазон вуали (максимальной прозрачности) фотоплёнок приблизительно составляет 0,1D, и эту цифру при сравнении следует прибавлять к динамическому диапазону плёнки.
Общее примечание: Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.
Единицы измерения
Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту — по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.
Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — lg), во втором — по основанию 2 (двоичный логарифм — log2).
Логарифмическая шкала — это удобный способ уложить огромный диапазон значений измеряемого параметра в компактном виде. Можно предположить, что к концу шкалы теряется её точность. Это так, но дело в том, что и органы чувств человека ведут себя так же. Глаз человека, например, может различить небольшой перепад в свете звёзд, но такой же в абсолютных числах перепад яркости двух ярких ламп глаз уже не зафиксирует.
Поэтому десятичный логарифм используется для соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при падении вдвое количества света.
Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).
Часто динамический диапазон записывают в виде отношения, показывающего, во сколько раз между крайними точками диапазона происходит перепад измеряемого параметра, например 100:1 (2D) или 1000:1 (3D). Обычно такой способ записи применяется для указания контрастности мониторов.
Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:
D = lg(Max/Min)
Формула вычисления фотографической широты аналогична, но вместо десятичного логарифма применяется двоичный.
Динамический диапазон цифровых устройств измеряют ещё и в децибелах. Способ измерения практически аналогичен вышеописанному, поскольку децибел — тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дБ), и сейчас я объясню, почему.
Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин: мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы меряем не белы а децибелы, которые в 10 раз меньше.
Однако, существует возможность померить в децибелах и амплитудные величины, такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть зависимость от них соответствующей им энергетической величины. А зависимость эта всегда квадратичная.
Например, вычислим зависимость мощности от напряжения. Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично. Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:
lg(Umax2/Umin2) = lg(Umax/Umin)2 = 2*lg(Umax/Umin)
Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:
Децибелы = 20*lg(Umax/Umin)
Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.
Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.
Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Для этого берём десятичный логарифм от двойки и получаем искомый результат — цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.
Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. В этом случае шкала имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.